Today's assignment:

Identities Additional Practice #1-33 (due Friday, 10 points)

Complete as much as possible before the group quiz tomorrow so you are prepared for the assessment!!

Ch. 7 Identities Review

Show work!

1) Solve the following for x, in terms of π , where $0 \le x < 360^{\circ}$

$$\frac{\sin x - 2\sin x \cos x = 0}{\text{factor}}$$

$$5 \text{in} \times (1 - 2\cos x) = 0$$

$$5 \text{in} \times = 0 \quad | -2\cos x = 0$$

$$4 \text{use unit} \quad -2\cos x = -1$$

$$6 \text{cos} \times = -\frac{1}{2}$$

$$6 \text{cos} \times = -\frac{1}{2}$$

$$7 \text{cos} \times = -\frac{1}{2}$$

CHECK ANSWERS #1-9

0 0 0 30 45 60 60 60 90 120 120 120 135 180 210 240 240 270 300 300 300 300 315 330

Ch. 7 Identities Review

Show work!

Solve the following for x, in terms of π , where $0 \le x < 360^{\circ}$ 1)

 $\sin x - 2 \sin x \cos x = 0$

2cos2b-1-cos0=0 rewrite 2cos2b-1-cos0=0 ->2cos2b-cos6-1=0

(2cost+1)(cost)

Now split apar.

+ solve using

zero product property

apply

apply

apply

factors

factors

expression

Solve using degrees instead of radians.

Ch. 7 Identities Review

Show work!

1) Solve the following for x, in terms of π , where $0 \le x < 360^\circ$

$$\sin x - 2\sin x \cos x = 0$$

- Find all values of θ in the interval 0° ≤ θ < 360° that satisfy the equation cos 2θ - cos θ = 0.
- 3) Find all values of θ in the interval $0^{\circ} \le \theta < 360^{\circ}$ that satisfy the equation $\sin 2\theta + \cos \theta = 0$.
- 4) If x is a positive acute angle, solve $6 \tan x 2\sqrt{3} = 0$ to the nearest degree.
- 5) If x is a positive acute angle, solve $4 \sin x 2\sqrt{2} = 0$ to the nearest degree.
- Given 2 tan x + 2 = 0, solve for x, to the nearest degree, in the interval 0 ≤ x ≤ 360.
- 7) Given $2 \tan x + 2\sqrt{3} = 0$, solve for x, to the nearest degree, in the interval $0 \le x \le 360$.
- 8) What are all values of θ in the interval $0^{\circ} \le \theta < 360^{\circ}$ that satisfy the equation $2 \cos^2 \theta 3 \cos \theta + 1 = 0$?
- 9) Find, to the nearest degree, the solution set of 4 cos² x - 1 = 0 in the interval between 0° and 360°.
- 10) Express cos² θ + sin² θ + tan² θ as a single trigonometric function.
- 11) Express $\frac{\cos^2 \theta}{1-\cos^2 \theta}$ as a single trigonometric function.
- Express csc θ cot θ cos θ as a single trigonometric function.
- 13) Transform cos θ csc θ tan θ sin² θ into an equivalent expression in terms of the trigonometric function cos θ.

NAME:

19) The expression $\sec^2 \theta + \csc^2 \theta$ is equivalent to

A)
$$\sin^2\theta\cos^2\theta$$

C)
$$\frac{1}{\sin^2\theta\cos^2\theta}$$

D)
$$1 + \tan^2 \theta$$

20) The expression cos 70° cos 10° + sin 70° sin 10° is equivalent to

 The expression sin 50° cos 40° + cos 50° sin 40° is equivalent to

22) Since $\sin 75^\circ = \sin (30^\circ + 45^\circ)$, then $\sin 75^\circ$ equals

A)
$$\frac{\sqrt{6}-\sqrt{2}}{4}$$

C)
$$\frac{\sqrt{2} + \sqrt{6}}{4}$$

B)
$$\frac{-\sqrt{2}-\sqrt{6}}{4}$$

D)
$$\frac{-\sqrt{6}+\sqrt{2}}{4}$$

3) The expression tan (180° - y) is equivalent to

C)
$$\frac{-\tan y}{1 + \tan y}$$

$$\frac{1-\tan y}{1+\tan y}$$

24) The expression $\sec x \sin 2x$ is equivalent to

25) The expression
$$\frac{\sin 2A}{2\cos^2 A}$$
 is equivalent to

26) The expression
$$\frac{1+\cos 2x}{\sin 2x}$$
 is equivalent to

- 14) Simplify: $\tan^2 \theta \cos^2 \theta + \cos^2 \theta$
- 15) If $\tan A = \frac{2}{3}$ and $\tan B = \frac{1}{2}$, what is the value of $\tan (A + B)$?
- 16) The expression $\frac{\sec \theta}{\tan \theta}$ is equivalent to
 - A) csc θ

C) sin θ

B) cos θ

- D) sec θ
- 17) The expression sin θ (cot θ csc θ) is equivalent to
 - A) -sin θ

C) cos θ - 1

B) $\cos \theta - \sin^2 \theta$

- D) 2 cos θ
- 18) For all values of θ for which the expression is defined, $\frac{\sec \theta}{\csc \theta}$ is equivalent to
 - A) cot θ

C) cos θ

B) sin θ

D) tan θ

- 27) The expression cos 2A cos2 A is equivalent to
- 28) If $\angle A$ and $\angle B$ are acute angles, $\sin A = \frac{4}{5}$, and $\cos B = \frac{5}{13}$, what is the value of $\sin (A + B)$?
- 29) If $\sin A = \frac{3}{5}$, find $\cos 2A$.
- 30) If $\cos \theta = -\frac{3}{5}$, find $\cos 2\theta$ and express in simplest form.
- Find the value of tan 2A if tan A = -√6.
- 32) If A is a positive acute angle and $\cos A = \frac{7}{9}$, find the value of $\sin \frac{A}{2}$.
- 33) If A is a positive acute angle and $\cos A = \frac{1}{5}$ find the value of $\cos \frac{A}{2}$.

CHE	CK	AN	SW	ERS	8 #1-	9		
CHE 0 0	0	30	45	60	60	60	90	120
120	120	1:	35	180	210	24	0 2	240
270								

CHECK ANSWERS #10-15, 24-33
sinθ 2sinx -sin²A cos²θ
tanA sec²θ cotx cot²θ
$$\frac{-7}{25}$$
 $\frac{7}{4}$ $\frac{7}{25}$ $\frac{1}{3}$
1 $\frac{56}{65}$ $\frac{2\sqrt{6}}{5}$ $\frac{\sqrt{15}}{5}$
A A B C C C C D

Check answers (blue sheet)

16. A

17. C

18. D

19. C

20. B

21. C

22. C

23. A

GROUP QUIZ: tomorrow!

- →No calculator, no notes!
- →Only the following identities will be provided on the test:

sum/difference, double angle, half angle

Prepare for upcoming quiz/test

- *Quiz yourself: practice identities, unit circle.
- *No notes and no calculator for quiz & test.
- *Use handout #1-13 as a guide to study for the quiz and test (same format, questions will be in a different order.)
- *Be ready to also simplify, factor, substitute, verify, solve for θ, etc...

Identities Practice

Name the function that best completes each statement.

Quotient Identities:

1.
$$\frac{\cot \theta}{\sin \theta} = \frac{\cos \theta}{\sin \theta}$$

2.
$$\frac{\tan \theta}{\cos \theta} = \frac{\sin \theta}{\cos \theta}$$

memorize these dentities.

Reciprocal identities:

3.
$$\frac{\cot \theta}{\tan \theta} = \frac{1}{\tan \theta}$$

4.
$$\frac{\sec \theta}{\cos \theta} = \frac{1}{\cos \theta}$$
5.
$$\frac{\csc \theta}{\sin \theta}$$

5.
$$\frac{\csc\theta}{\sin\theta} = \frac{1}{\sin\theta}$$

$$6. \ \underline{\sin \theta} = \frac{1}{\csc \theta}$$

7.
$$\frac{\tan \theta}{\cot \theta} = \frac{1}{\cot \theta}$$

8.
$$\frac{\cos \theta}{\sec \theta} = \frac{1}{\sec \theta}$$

Pythagorean identities:

9.
$$\underline{\sin^2\theta} + \underline{\cos^2\theta} = 1$$

#10-11: *Derive* the other two Pythagorean identities using the information in #9. Clearly show all steps.

show all steps.

10.
$$\frac{\sin^2\theta}{\sin^2\theta} + \frac{\cos^2\theta}{\sin^2\theta} = \frac{1}{\sin^2\theta}$$

Sin^2 θ + $\frac{\sin^2\theta}{\sin^2\theta} + \frac{\cos^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$

11. $\frac{\sin^2\theta}{\cos^2\theta} + \frac{\cos^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$

Simplify

Anyide

13. Define each function in terms of x and y (based on the unit circle with r = 1.)

$$\sin \theta = y$$
 $\csc \theta = \frac{1}{y}$

$$\cos \theta = x$$
 $\sec \theta = \frac{1}{x}$

$$\tan \theta = \frac{y}{x}$$
 $\cot \theta = \frac{x}{y}$