Today's assignment:

Identities Additional Practice \#1-33

(due Friday, 10 points)
Complete as much as possible before the group quiz tomorrow so you are prepared for the assessment!!

Ch. 7 Identities Review
Show work!

1) Solve the following for x, in terms of π, where $0^{\circ} \leq x<360^{\circ}$

$$
\sin x-2 \sin x \cos x=0
$$

factor

$$
\begin{aligned}
& \sin x(1-2 \cos x)=0 \\
& \sin x=0 \quad 1-2 \cos x=0
\end{aligned}
$$

use unit $\quad-2 \cos x=-1$
circle to
solve
$\cos x=-\frac{1}{2}$
$\sin x=0$

$$
\cos x=\frac{1}{2}
$$

$$
\begin{array}{r}
x=0^{\circ} \\
+180^{\circ}
\end{array} \quad \begin{array}{r}
x=60^{\circ} \\
300^{\circ}
\end{array}
$$

CHECK ANSWERS \#1-9									
0	0	0	30	45	60	60	60	90	120
120	120	135	180	210	240	240			
270	300	300	300	300	315	330			

Ch. 7 densities Review Show Work! (Identity'

think $2 x^{2}-1=0$ $(2 x+1)(x-1)=0$ apply
now split apart a solve using zero product property as in problem \#1

Solve using degrees instead of radians.

Ch. 7 Identities Review Show work!

1) Solve the following for x, in terms of π, where $0 \leq x<360^{\circ}$

$$
\sin x-2 \sin x \cos x=0
$$

2) Find all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$ that satisfy the equation $\cos 2 \theta-\cos \theta=0$.
3) Find all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$ that satisfy the equation $\sin 2 \theta+\cos \theta=0$.
4) If x is a positive acute angle, solve $6 \tan x-2 \sqrt{3}=0$ to the nearest degree.
5) If x is a positive acute angle, solve $4 \sin x-2 \sqrt{2}=0$ to the nearest degree.
6) Given $2 \tan x+2=0$, solve for x, to the nearest degree, in the interval $0 \leq x \leq 360$.
7) Given $2 \tan x+2 \sqrt{3}=0$, solve for x, to the nearest degree, in the interval $0 \leq x<360$.
8) What are all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$ that satisfy the equation $2 \cos ^{2} \theta-3 \cos \theta+1=0$?
9) Find, to the nearest degree, the solution set of $4 \cos ^{2} x-1=0$ in the interval between 0° and 360°.
10) Express $\cos ^{2} \theta+\sin ^{2} \theta+\tan ^{2} \theta$ as a single trigonometric function.
11) Express $\frac{\cos ^{2} \theta}{1-\cos ^{2} \theta}$ as a single trigonometric function.
12) Express $\csc \theta-\cot \theta \cos \theta$ as a single trigonometric function.
13) Transform $\cos \theta \csc \theta \tan \theta-\sin ^{2} \theta$ into an equivalent expression in terms of the trigonometric function $\cos \theta$.

NAME:

19) The expression $\sec ^{2} \theta+\csc ^{2} \theta$ is equivalent to
A) $\sin ^{2} \theta \cos ^{2} \theta$
B) $1-\tan ^{2} \theta$
C) $\frac{1}{\sin ^{2} \theta \cos ^{2} \theta}$
D) $1+\tan ^{2} \theta$
20) The expression $\cos 70^{\circ} \cos 10^{\circ}+\sin 70^{\circ} \sin 10^{\circ}$ is equivalent to
A) $\sin 60^{\circ}$
B) $\cos 60^{\circ}$
C) $\sin 80^{\circ}$
D) $\cos 80^{\circ}$
21) The expression $\sin 50^{\circ} \cos 40^{\circ}+\cos 50^{\circ} \sin 40^{\circ}$ is equivalent to
A) $\cos 10^{\circ}$
B) $\cos 90^{\circ}$
C) $\sin 90^{\circ}$
D) $\sin 10^{\circ}$
22) Since $\sin 75^{\circ}=\sin \left(30^{\circ}+45^{\circ}\right)$, then $\sin 75^{\circ}$ equals
A) $\frac{\sqrt{6}-\sqrt{2}}{4}$
B) $\frac{\sqrt{2}-\sqrt{6}}{4}$
C) $\frac{\sqrt{2}+\sqrt{6}}{4}$
D) $\frac{-\sqrt{6}+\sqrt{2}}{4}$
23) The expression $\tan \left(180^{\circ}-y\right)$ is equivalent to
A) $-\tan y$
B) -1
C) $\frac{-\tan y}{1+\tan y}$
D) $\frac{1-\tan y}{1+\tan y}$
24) The expression $\sec x \sin 2 x$ is equivalent to
25) The expression $\frac{\sin 2 A}{2 \cos ^{2} A}$ is equivalent to
26) The expression $\frac{1+\cos 2 x}{\sin 2 x}$ is equivalent to
27) Simplify: $\tan ^{2} \theta \cos ^{2} \theta+\cos ^{2} \theta$
28) If $\tan A=\frac{2}{3}$ and $\tan B=\frac{1}{2}$, what is the value of $\tan (A+B)$?
29) The expression $\frac{\sec \theta}{\tan \theta}$ is equivalent to
A) $\csc \theta$
B) $\cos \theta$
C) $\sin \theta$
D) $\sec \theta$
30) The expression $\sin \theta(\cot \theta-\csc \theta)$ is equivalent to
A) $-\sin \theta$
B) $\cos \theta-\sin ^{2} \theta$
C) $\cos \theta-1$
D) $2 \cos \theta$
31) For all values of θ for which the expression is defined, $\frac{\sec \theta}{\csc \theta}$ is equivalent to
A) $\cot \theta$
B) $\sin \theta$
C) $\cos \theta$
D) $\boldsymbol{\operatorname { t a n }} \theta$
32) The expression $\cos 2 \mathrm{~A}-\cos ^{2} \mathrm{~A}$ is equivalent to
33) If $\angle A$ and $\angle B$ are acute angles, $\sin A=\frac{4}{5}$, and $\cos B=\frac{5}{13}$, what is the value of $\sin (A+B)$?
34) If $\sin A=\frac{3}{5}$, find $\cos 2 A$.
35) If $\cos \theta=-\frac{3}{5}$, find $\cos 2 \theta$ and express in simplest form.
36) Find the value of $\tan 2 A$ if $\tan A=-\sqrt{6}$.
37) If A is a positive acute angle and $\cos A=\frac{7}{9}$, find the value of $\sin \frac{A}{2}$.
38) If A is a positive acute angle and $\cos A=\frac{1}{5}$, find the value of $\cos \frac{\mathrm{A}}{2}$.

CHECK ANSWERS \#1-9	CHECK ANSWERS \#10-15, 24-33	CHECK ANSWERS
0 0 0 30 45 60 60 60 90 120	$\sin \theta 2 \sin \mathrm{x}-\sin ^{2} \mathrm{~A} \cos ^{2} \theta$	\#16-23
$\begin{array}{lllllllll}120 & 120 & 135 & 180 & 210 & 240 & 240\end{array}$	$\tan A \sec ^{2} \theta \text { cotx } \cot ^{2} \theta \quad \overline{25} \quad \overline{4} \quad \overline{25}$	A ABCCCCD
$\begin{array}{llllllllll}270 & 300 & 300 & 300 & 300 & 315 & 330\end{array}$	$1 \frac{56}{65} \quad \frac{2 \sqrt{6}}{5} \quad \frac{\sqrt{15}}{5}$	

Check answers (blue sheet)

$$
\begin{aligned}
& \text { 16. A } \\
& \text { 17. C } \\
& \text { 18. } \mathrm{D}
\end{aligned}
$$

19. C
20. B
21. C
22. C

$$
\text { 23. } A
$$

GROUP QUIZ: tomorrow!

\rightarrow No calculator, no notes!
\rightarrow Only the following identities will be provided on the test:
sum/difference, double angle, half angle

Prepare for upcoming quiz/test

*Quiz yourself: practice identities, unit circle. *No notes and no calculator for quiz \& test. *Use handout \#1-13 as a guide to study for the quiz and test (same format, questions will be in a different order.)
*Be ready to also simplify, factor, substitute, verify, solve for θ, etc...

Identities Practice

/CHECK ANSWERS

Name the function that best completes each statement.

Quotient Identities:

$$
\text { 1. } \underline{\boldsymbol{\operatorname { c o t }} \theta}=\frac{\cos \theta}{\sin \theta}
$$

$$
\text { 2. } \underline{\tan \theta}=\frac{\sin \theta}{\cos \theta}
$$

Reciprocal identities:
3. $\underline{\boldsymbol{\operatorname { c o t }} \boldsymbol{\theta}}=\frac{1}{\tan \theta}$
4. $\quad \underline{\sec \theta}=\frac{1}{\cos \theta}$
5. $\underline{\boldsymbol{\operatorname { c s c }} \boldsymbol{\theta}}=\frac{1}{\sin \theta}$

Pythagorean identities:
9. $\underline{\sin ^{2} \theta}+\underline{\cos ^{2} \theta}=1$

$$
\begin{aligned}
& \text { 6. } \underline{\sin \theta}=\frac{1}{\csc \theta} \\
& \text { 7. } \underline{\tan \theta}=\frac{1}{\cot \theta} \\
& \text { 8. } \underline{\cos \theta}=\frac{1}{\sec \theta}
\end{aligned}
$$

\#10-11: Derive the other two Pythagorean identities using the information in \#9. Clearly show all steps.

11.

$$
\frac{\sin ^{2} \theta+\frac{\cos ^{2} / \theta}{\cos ^{2} \theta} \frac{1}{\cos ^{2} \theta} \cos ^{2} \theta}{}
$$

$$
\rightarrow \tan ^{2} \theta+1=\sec ^{2} \theta
$$

simplify
divide

> 13. Define each function in terms of x and y (based on the unit circle with $\mathbf{r}=1$.) $\sin \theta=\boldsymbol{y}$ $\operatorname{cosc} \theta=\frac{1}{\boldsymbol{y}}$ $\cos \theta=\boldsymbol{x}$

